Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2201.06323v4

ABSTRACT

From the perspective of human mobility, the COVID-19 pandemic constituted a natural experiment of enormous reach in space and time. Here, we analyse the inherent multiple scales of human mobility using Facebook Movement Maps collected before and during the first UK lockdown. First, we obtain the pre-lockdown UK mobility graph, and employ multiscale community detection to extract, in an unsupervised manner, a set of robust partitions into flow communities at different levels of coarseness. The partitions so obtained capture intrinsic mobility scales with better coverage than NUTS regions, which suffer from mismatches between human mobility and administrative divisions. Furthermore, the flow communities in the fine scale partition match well the UK Travel to Work Areas (TTWAs) but also capture mobility patterns beyond commuting to work. We also examine the evolution of mobility under lockdown, and show that mobility first reverted towards fine scale flow communities already found in the pre-lockdown data, and then expanded back towards coarser flow communities as restrictions were lifted. The improved coverage induced by lockdown is well captured by a linear decay shock model, which allows us to quantify regional differences both in the strength of the effect and the recovery time from the lockdown shock.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21264240

ABSTRACT

BackgroundReal-time prediction is key to prevention and control of healthcare-associated infections. Contacts between individuals drive infections, yet most prediction frameworks fail to capture the dynamics of contact. We develop a real-time machine learning framework that incorporates dynamic patient contact networks to predict patient-level hospital-onset COVID-19 infections (HOCIs), which we test and validate on international multi-site datasets spanning epidemic and endemic periods. MethodsOur framework extracts dynamic contact networks from routinely collected hospital data and combines them with patient clinical attributes and background contextual hospital data to forecast the infection status of individual patients. We train and test the HOCI prediction framework using 51,157 hospital patients admitted to a UK (London) National Health Service (NHS) Trust from 01 April 2020 to 01 April 2021, spanning UK COVID-19 surges 1 and 2. We then validate the framework by applying it to data from a non-UK (Geneva) hospital site during an epidemic surge (40,057 total inpatients) and to data from the same London Trust from a subsequent period post surge 2, when COVID-19 had become endemic (43,375 total inpatients). FindingsBased on the training data (London data spanning surges 1 and 2), the framework achieved high predictive performance using all variables (AUC-ROC 0{middle dot}89 [0{middle dot}88-0{middle dot}90]) but was almost as predictive using only contact network variables (AUC-ROC 0{middle dot}88 [0{middle dot}86-0{middle dot}90]), and more so than using only hospital contextual (AUC-ROC 0{middle dot}82 [0{middle dot}80-0{middle dot}84]) or patient clinical (AUC-ROC 0{middle dot}64 [0{middle dot}62-0{middle dot}66]) variables. The top three risk factors we identified consisted of one hospital contextual variable (background hospital COVID-19 prevalence) and two contact network variables (network closeness, and number of direct contacts to infectious patients), and together achieved AUC-ROC 0{middle dot}85 [0{middle dot}82-0{middle dot}88]. Furthermore, the addition of contact network variables improved performance relative to hospital contextual variables on both the non-UK (AUC-ROC increased from 0{middle dot}84 [0{middle dot}82-0{middle dot}86] to 0{middle dot}88 [0{middle dot}86-0{middle dot}90]) and the UK validation datasets (AUC-ROC increased from 0{middle dot}52 [0{middle dot}49-0{middle dot}53] to 0{middle dot}68 [0{middle dot}64-0{middle dot}70]). InterpretationOur results suggest that dynamic patient contact networks can be a robust predictor of respiratory viral infections spreading in hospitals. Their integration in clinical care has the potential to enhance individualised infection prevention and early diagnosis. FundingMedical Research Foundation, World Health Organisation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Swiss National Science Foundation, German Research Foundation.


Subject(s)
COVID-19 , Respiratory Tract Infections
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.07.21254497

ABSTRACT

Contact tracing is a key tool in epidemiology to identify and control outbreaks of infectious diseases. Existing contact tracing methodologies produce contact maps of individuals based on a binary definition of contact which can be hampered by missing data and indirect contacts. Here, we present our Spatial-temporal Epidemiological Proximity (StEP) model to recover contact maps in disease outbreaks based on movement data. The StEP model accounts for imperfect data by considering probabilistic contacts between individuals based on spatial-temporal proximity of their movement trajectories, creating a robust movement network despite possible missing data and unseen transmission routes. We showcase the potential of StEP for contact tracing with outbreaks of multidrug-resistant bacteria and COVID-19 in a large hospital group in London, UK. In addition to the core structure of contacts that can be recovered using traditional methods of contact tracing, the StEP model reveals missing contacts that connect seemingly separate outbreaks. Comparison with genomic data further confirmed that these additional contacts indeed improve characterisation of disease transmission and so highlights how the StEP framework can inform effective strategies of infection control and prevention.


Subject(s)
COVID-19 , Communicable Diseases
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-153249.v1

ABSTRACT

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph theoretical methods: bond-to-bond propensity analysis, which has been previously successful in identifying allosteric sites without a priori knowledge in benchmark data sets, and, Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. We further score the highest-ranking sites against random sites in similar distances through statistical bootstrapping and identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.06.369439

ABSTRACT

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph theoretical methods: Bond-to-bond propensity analysis, which has been previously successful in identifying allosteric sites without a priori knowledge in benchmark data sets, and, Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. We further score the highest ranking sites against random sites in similar distances through statistical bootstrapping and identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL